CHEMOTHERAPY STRATEGIES IN METASTATIC PANCREATIC DUCTAL ADENOCARCINOMA (mPDAC): FIRST-LINE CHEMOTHERAPY OPTIONS

Dr Eileen O'Reilly, MD Memorial Sloan Kettering Cancer Center, USA April 2025

mPDAC, metastatic pancreatic ductal adenocarcinoma

DEVELOPED BY GI CONNECT

This programme is developed by GI CONNECT, an international group of experts in the field of gastrointestinal oncology.

Acknowledgement and disclosures

This GI CONNECT programme is supported through an independent educational grant from Ipsen USA. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

Please note: The views expressed within this programme are the personal opinions of the experts. They do not necessarily represent the views of the experts' institutions, or the rest of the GI CONNECT group.

Expert disclosures:

Dr Eileen O'Reilly, MD:

- Research Funding to institution: Genentech/Roche, BioNTech, AstraZeneca, Arcus, Elicio, Parker Institute, NIH/NCI, Digestive Care, Break Through Cancer, Agenus, Amgen, Revolution Medicines
- Consulting/DSMB (mostly uncompensated): Arcus, AstraZeneca, Ability Pharma, Alligator BioSciences, Agenus, BioNTech, Ipsen, Ikena, Merck, Moma Therapeutics, Novartis, Leap Therapeutics, Astellas, BMS, Revolution Medicines, Regeneron, Tango.
- Travel: BioNTech
- Abbvie (spouse)

EDUCATIONAL OBJECTIVES

- Be able to differentiate the efficacy and safety profiles of chemotherapies for mPDAC and understand how mode of delivery plays a role in this
- 2. Be able to recognise the **cause of toxicities** and have an awareness of strategies that can be used to improve tolerability and manage side effects whilst maintaining optimal efficacy

CLINICAL TAKEAWAYS

- Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed at an advanced, incurable stage due to non-specific symptoms and has an extremely poor prognosis
- Systemic chemotherapy is the standard treatment for metastatic PDAC but molecularly targeted treatments and immunotherapies may have a role for specific patients
- Treatment selection depends on several factors, including patients' performance status and co-morbidities. These should be considered alongside the efficacy and safety profiles of the different chemotherapy regimens
- Treatment strategies can be implemented to manage toxicities associated with the different chemotherapy regimens to enable a patient to stay on treatment for optimal efficacy

PANCREATIC DUCTAL ADENOCARCINOMA

INTRODUCTION

- Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence and accounts for the majority (90%) of pancreatic neoplasms.¹ Typically after diagnosis, only 13% live for 5 years²
- PDAC is the third-leading cause of cancer mortality in the US and the seventh-leading cause worldwide.^{2,3} It is projected to become the second-leading cause of cancer-related mortality by 2030³
 - Approximately 1.7% of men and women will be diagnosed with pancreatic cancer at some point during their lifetime²
- In 2024, estimated numbers in the US are:
 - 66,440 new cases (3.3% of all new cancer cases)²
 - 51,750 deaths (8.5% of all cancer deaths)²
- Pancreatic cancer is difficult to diagnose due to the lack of early symptoms and 80-90% of patients have unresectable tumours due to the advanced stage at diagnosis⁴
- Surgery, chemotherapy and radiation are the primary treatment options for pancreatic cancer¹

US, United States

1. Orth M, et al. Radiat Oncol. 2019;14:141; 2. Cancer Stat Facts: Pancreatic Cancer. Available from: <u>https://seer.cancer.gov/statfacts/html/pancreas.html</u>. Accessed October 2024; 3. Park W, et al. JAMA. 2021; 326:851-862; 4. Rawla P, et al. World J Oncol. 2019;10:10-27

OVERVIEW OF TREATMENT FOR mPDAC

- Chemotherapy is the mainstay of treatment for mPDAC patients
- Enrolment in clinical trials should always be encouraged

Figure adapted from Casolino 2022

gBRCAm, germline BRCA mutation; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; FOLFOX, folinic acid (leucovorin calcium), fluorouracil, and oxaliplatin; gem, gemcitabine; mPDAC, metastatic pancreatic adenocarcinoma; mPFS, median progression-free survival; Nab, nanoparticle albumin-bound; NaI-IRI, nanoliposomal irinotecan; NALIRIFOX; NaI-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin Casolino R, Biankin AV. Camb Prism Precis Med. 2023;1:e14

KEY STUDIES OF 1L SYSTEMIC THERAPY FOR mPDAC

Study	Study	Study	Arm (NI)	Primary	Prima	Primary endpoint		Secondary Secondary endpoint		ORR	Notable adverse events
setting	Siudy	type	Ann (N)	endpoint	Months	HR (95% CI)	endpoint	Months	HR (95% CI)	(%)	(Grade ≥3)
First line	PRODIGE ¹	RCT,	FOLFIRINOX (171)	00	11.1	0.57	DEC	6.4	0.47	31.6	FOLFIRINOX vs Gem: neutropenia 47.5 vs 21.0%,
First-line	(2011)	phase 2/3	Gemcitabine (171)	05	6.8	(0.45 to 0.73)	FFO	3.3	(0.37 to 0.59)	9.4	thrombocytopenia 9.1 vs 3.6%, diarrhoea 12.7 vs 1.8%
		CT ² RCT, 13) phase 3	Gem + NabP (431)		8.5	0.72 PFS (0.62 to 0.83)	5.5	23.0	Gem + NabP vs Gem: Neutropenia 38.0 vs. 27.0%, Jeukopenia 31.0 vs. 16.0%		
First-line (2013)	(2013)		Gemcitabine (430)	OS	6.7		PFS	3.7	(0.58 to 0.82)	7.0	thrombocytopenia 13.0 vs 9.0%, fatigue 17.0 vs. 7.0%, and neuropathy 17.0 vs. 1.0%
		PCT	NALIRIFOX (383)		11.1	0.83		7.4	0.69	41.8	NALIRIFOX vs Gem + NabP: hypokalaemia 15.0 vs 4.0%, diarrhoea 20.0 vs 5.0%, nausea
First-line	(2023)	phase 3	Gem + NabP (387)	OS	9.2	(0.70-0.99)	PFS	5.6	(0.58-0.83)	36.2	Lower rates of hematological AE's with NALIRIFOX: neutropenia 14.0 vs 25.0%, anaemia 11.0 vs 17.0%
Motastatic			Olaparib (92)		7.4	0.52		19.0	0.82	23.1 ^b	Olaparib vs placebo: Fatigue 5.6
maintenance ^a	(2019, 2022)	phase 3	Placebo (62)	PFS	3.8	(0.35 to 0.82)	OS	19.2	(0.56 to 1.22)	11.5 ^b	vs 0%, anaemia 12.2 vs 3.3%, decreased appetite 3.3 vs 0%

^a Patients with germline mutations in *BRCA1* or *BRCA2*, who had received at least 16 weeks of continuous platinum-based chemotherapy as the first line treatment for metastatic pancreatic cancer, were enrolled; ^bAt data cut-off 1

AE, adverse event; BRCA1/2, BReast CAncer 1/2 gene; CI, confidence interval; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; Gem+ Nab-P, gemcitabine and nab (nanoparticle albumin-bound)-paclitaxel; HR, hazard ratio; mPDAC, metastatic pancreatic ductal adenocarcinoma; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RCT, randomised controlled trial

1. Conroy T et al, N Engl J Med. 2011;364:1817-25; 2. Von Hoff D, et al. N Engl J Med. 2013;369:1691-703; 3. Wainberg Z, et al. Lancet 2023;402:1272-81; 4. Golan T, et al. N Engl J Med. 2019;381:317-27; 5. Kindler H, et al. J Clin Oncol. 2022;40:3929-39

PRODIGE4/ACCORD11: STUDY DESIGN

FOLFIRINOX VS GEMCITABINE AS 1L THERAPY

Metastatic Pancreatic Cancer

FOLFIRINOX (n=171)

Oxaliplatin 85 mg/m² Irinotecan 180 mg/m² Leucovorin 400 mg/m² 5-FU bolus 400 mg/m², then 2,400 mg/m² infusional over 46 hours, every 2 weeks

Gemcitabine (n=171)

1,000 mg/m² weekly × 7 of 8 (cycle 1), then weekly × 3 of 4 (cycle 2 and subsequent cycles)

1L, first-line; 5-FU, fluorouracil; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin Conroy T, et al. N Engl J Med. 2011;364:1817-25

PRODIGE4/ACCORD11: FOLFIRINOX EMERGED AS A 1L OPTION

PROGRESSION-FREE SURVIVAL

OVERALL SURVIVAL

Median PFS: 6.4 mo FOLFIRINOX vs 3.3 mo gemcitabine

Median OS: 11.1 mo FOLFIRINOX vs 6.8 mo gemcitabine

1L, first-line; CI, confidence interval; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; mo, months; OS, overall survival; PFS, progression-free survival

Conroy T, et al. N Engl J Med. 2011;364:1817-25

PRODIGE4/ACCORD11: SAFETY

MOST COMMON GRADE 3 OR 4 ADVERSE EVENTS OCCURRING IN MORE THAN 5% OF PATIENTS IN THE SAFETY POPULATION^a

Event	FOLFIRINOX (N=171)	Gemcitabine (N=171)	P value
Hematologic, n/N (%)			
Neutropenia	75/164 (47.5)	35/167 (21.0)	<0.001
Febrile neutropenia	9/166 (5.4)	2/169 (1.2)	0.03
Thrombocytopenia	15/165 (9.1)	6/168 (3.6)	0.04
Anaemia	13/166 (7.8)	10/168 (6.0)	NS
Non-hematologic, n/N (%)			4
Fatigue	39/165 (23.6)	30/169 (17.8)	NS
Vomiting	24/166 (14.5)	14/169 (8.3)	NS
Diarrhoea	21/165 (12.7)	3/169 (1.8)	<0.001
Sensory neuropathy	15/166 (9.0)	0/169	<0.001
Elevated level of alanine aminotransferase	12/165 (7.3)	35/168 (20.8)	<0.001
Thromboembolism	11/166 (6.6)	7/169 (4.1)	NS

^aEvents listed are those that occurred in more than 5% of patients in either group. NS denotes not significant FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin Conroy T, et al. N Engl J Med. 2011;364:1817-25

MPACT: STUDY DESIGN

NAB-PACLITAXEL PLUS GEMCITABINE AS 1L THERAPY

1L, first-line; Nab, nanoparticle albumin-bound Von Hoff D, et al. N Engl J Med. 2013;369:1691-703

MPACT: EFFICACY

	GEM + NabP (n=431)	GEM (n=430)	Hazard ratio	
Overall survival, months	8.5	6.7	0.72 (p<0.001)	
One-year survival, %	35	22		
Progression-free survival, months	5.5	3.7	0.69 (p<0.001)	
6-month PFS, %	44	25		
Response rate, %	23	7	p<0.001	
Median treatment duration (range), months	3.9 (0.1-21.9)	2.8 (0.1-21.5)		
% protocol dose ^a Nab-paclitaxel Gemcitabine	80.6 75.2	_ 84.6%		

^aProportion of administered cumulative dose relative to the planned cumulative dose GEM, gemcitabine; HR, hazard ratio; NabP, nanoparticle albumin-bound paclitaxel; PFS, progression-free survival Von Hoff D, et al. N Engl J Med. 2013;369:1691-703

MPACT: THE ADDITION OF NabP TO GEM IMPROVES OVERALL SURVIVAL

CI, confidence interval; GEM, gemcitabine; HR, hazard ratio; NabP, nanoparticle albumin-bound paclitaxel Von Hoff D, et al. N Engl J Med. 2013;369:1691-703

MPACT: PRE-SPECIFIED SUBGROUP ANALYSIS

Overall Survival			
Subgroup	GEM + NabP	GEM	Hazard Ratio for death (95% CI)
	No. of events/no	. of patients	
All patients	333/431	359/430	0.72 (0.62-0.83)
Age			
<65 yr	188/254	209/242	0.65 (0.53-0.79)
≥65 yr	145/177	150/188	0.81 (0.63-1.03)
Sex			
Female	138/186	141/173	0.72 (0.57-0.93)
Male	195/245	218/257	0.72 (0.59-0.88)
Karnofsky performance-status scor	e		
70-80	142/179	146/161	0.61 (0.48-0.78)
90-100	187/248	212/268	0.75 (0.62-0.92)
Primary tumour location			
Head	142/191	155/180	0.59 (0.46-0.75)
Other	188/237	201/246	0.80 (0.65-0.98)
Liver metastases			
Yes	290/365	309/360	→→ 0.69 (0.59-0.81)
No	43/66	50/70	0.86 (0.56-1.33)
No. of metastatic sites			
1	21/33	16/21	0.41 (0.19-0.88)
2	159/202	163/206	0.75 (0.60-0.95)
3	104/136	121/140	0.79 (0.61-1.04)
>3	49/60	59/63	0.50 (0.33-0.76)
Level of CA19-9			
Normal	47/60	43/56	1.07 (0.69-1.66)
<59x ULN	96/122	95/120	0.83 (0.61-1.12)
≥59x ULN	151/197	171/195	⊢● − 0.61 (0.48-0.77)
Region			
Australia	50/61	53/59	0.67 (0.44-1.01)
Eastern Europe	62/64	59/62	0.84 (0.58-1.23)
Western Europe	14/38	17/38	0.72 (0.35-1.47)
North America	207/268	230/271	0.68 (0.56-0.82)
			GEM + NabP Better GEM Better

CA19-9, carbohydrate antigen 19-9; CI, confidence interval; GEM, gemcitabine; NabP, nanoparticle albumin-bound paclitaxel; ULN, upper limit of normal; yr, year

Von Hoff D, et al. N Engl J Med. 2013;369:1691-703

MPACT: SAFETY

Preferred Term	GEM + NabP (n=421)	GEM (n=402)
Grade ≥3 Hematologic AE ^a , % Neutropenia Leukopenia Thrombocytopenia Anaemia	38 31 13 13	27 16 9 12
Patients who received growth factors, %	26	15
Febrile Neutropenia, ^b %	3	1
Grade ≥3 Non-hematologic AE ^b in >5% patients, % Fatigue Peripheral Neuropathy ^c Diarrhoea	17 17 6	7 <1 <1
Grade ≥3 Neuropathy Median time to Onset, median days Median time to Improvement by 1 Grade, median days Median time to Improvement to Grade ≤1, median days Patients who resumed NabP, %	140 21 29 44	113 29 NR NA

^a Based on lab values; ^b Based on investigator assessment of treatment-related events; ^c grouped term AE, adverse event; GEM, gemcitabine; NabP, nanoparticle albumin-bound paclitaxel; NA, not applicable; NR, not reached Von Hoff D, et al. N Engl J Med. 2013;369:1691-703

• GEM + NabP group:

- High levels of neutropenia, and thrombocytopenia
- Significant percentage of patients with peripheral neuropathy

MODIFIED GEMCITABINE PLUS Nab-PACLITAXEL

A MODIFIED REGIMEN OF BIWEEKLY mGEM + NabP IN METASTATIC PANCREATIC CANCER PATIENTS IS TOLERABLE AND EFFECTIVE

Variable	mGEM + NabP	MPACT trial
Median PFS, months	5.4, N=57	5.5, N=431
Median OS, months	10, N=57	8.5, N=431
Grade 3 or 4 toxicity, hematological, n/N(%)		
Anaemia	8/57 (14%)	53/405 (13%)
Neutropenia	11/57 (19%)	153/405 (38%)
Thrombocytopenia	1/57 (2%)	52/405 (13%)
Growth factor support	7/57 (12%)	110/431 (26%)
Grade 3 or 4 neurotoxicity	1/57 (2%)	70/421 (17%)
Dose reduction, (%): Nab-paclitaxel Gemcitabine	20% 16%	41% 47%

mGEM + NabP, modified regimen of gemcitabine and nanoparticle albumin-bound paclitaxel; OS, overall survival; PFS, progression-free survival Ahn D, et al. Therapeutic Advances in Medical Oncology 2017; 9(2):75-8

TWO-WEEK LOW DOSE GEM-NabP DOSING MANAGES TOXICITY AND MAINTAINS EFFICACY

Outcome	First-line GEM + NabP efficacy	Outcome	Second-li e
Median OS (95% CI), mo	7.5 (6.51-10.33)	Median OS (95% CI), mo	7.6 (6
Median OS (95% CI) stratified by ECOG PS	S, mo	Median OS (95% CI) stratified by ECOG	PS, mo
0	12.7 (8.49-18.49)	0	8 (6.22
1	9.6 (6.48-12.04)	1	7.3 (5.3
2	5.3 (4.41-10.2)	2	6.1 (4.6
3	1.6 (NE)		P value :
	P value <0.0001		
Median PFS (95% CI), mo	2.8 (2.3-3.68)	Median PFS (95% CI), mo	2.5 (2.14
Median PFS (95% CI) stratified by ECOG F	PS, mo	Median PFS (95% CI) stratified by ECO	G PS, mo
0	5.3 (2.73-9.11)	0	3.5 (2.07
1	2.8 (2.24-4.34)	1	2.4 (2.07
2	1.8 (1.41-3.59)	2	2.6 (1.74
3	1.4 (NE)		P value =
	P value = 0.0072		

Median dosing was 600 mg/m² at fixed dose rate for GEM and 125 mg/m² for NabP given predominantly (~90%) every two weeks

CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; GEM-NabP, gemcitabine + nanoparticle albumin-bound paclitaxel; mo, months; NE, not estimable; OS, overall survival; PFS, progression-free survival Rogers J, et al. Cancer Med. 2020;9:5406-15

NAPOLI-3: STUDY DESIGN

A randomised, open-label phase 3 study of liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin (NALIRIFOX) versus gemcitabine + Nab-paclitaxel in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma

^a Dose expressed as irinotecan free base equivalent; ^b Administered sequentially as a continuous infusion over 46 hours beginning on days 1 and 15 of a 28-day cycle (dose delays and oxaliplatin discontinuation were permitted); ^c Until progressive disease; ^d The study was completed once all patients had discontinued the study treatment and at least 543 events had occurred in randomised patients

5-FU, fluorouracil; AE, adverse event; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group performance status; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; GEM, gemcitabine; LV, leucovorin calcium (folinic acid); MedDRA, Medical Dictionary for Regulatory Activities; MRI magnetic resonance imaging; NabP, nanoparticle albumin-bound paclitaxel; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; ORR, objective response rate; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; PFS, progression-free survival; QoL, quality of life; R, randomisation; RECIST, Response Evaluation Criteria in Solid Tumours

O'Reilly E, et al. J. Clin Oncol. 2023;41;16_suppl:4006 (ASCO 2023 oral presentation); Jung K, et al. Ther Adv Med Oncol 2023; 15: 1-15

HOW IS NANOLIPOSOMAL IRINOTECAN (NaI-IRI) DIFFERENT TO IRINOTECAN?

- Nanoliposomal irinotecan: irinotecan encapsulated in liposome nanoparticles¹
- Liposome shelters irinotecan from conversion to its active metabolite (SN-38) thereby remaining in the circulation for longer than free (unencapsulated) irinotecan¹⁻³
- Leads to increases and prolonged intratumoural levels of both irinotecan and SN-38 compared with free irinotecan¹
- Median OS of 5-2 months for Nal-IRI in a phase 2 study of gemcitabine-refractory metastatic pancreatic cancer^{1,4}

Nal-IRI, nanoliposomal irinotecan; OS, overall survival; PEG-DSPE, polyethylene glycol-distearoylphosphatidylethanolamine
1. Wang-Gillam A, et al. Lancet 2016;387:545-57; 2. Kalra AV, et al. Cancer Res. 2014;74:7003-13; 3. Roy AC, et al. Ann Oncol. 2013;24: 1567-73;
4. Ko AH, et al. Br J Cancer. 2013;109:920-25; 5. Image: Camptothecin & Its Derivatives for Cancer Therapy | Biopharma PEG. Available at: https://www.biochempeg.com/article/310.html. Accessed July 2024

NAPOLI-3: NALIRIFOX MORE EFFECTIVE THAN NabP/GEM

OVERALL SURVIVAL

PROGRESSION-FREE SURVIVAL

20

CI, confidence interval; GEM, gemcitabine; mo, months; NabP, nanoparticle albumin-bound paclitaxel; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin

Wainberg Z, et al. Lancet 2023;402:1272-81

NAPOLI-3: OS SUBGROUP ANALYSES (ITT POPULATION)

	Events/patie	ents	NALIRIFOX, median (months)	GEM + NabP, median (months	5)	Hazard ratio (95% CI)
Age	NALIRIFOX	GEM + NabP				
Presence of liver metastases at baseline						
Yes	220/309	242/309	10.3	8.6		0.82 (0.68-0.98)
No	39/74	43/78	15.0	13.8		0.89 (0.57-1.37)
Number of metastatic sites						
1	75/114	92/138	11.5	11.3	_	0.98 (0.72-1.32)
2	87/120	83/108	11.5	10.1		0.89 (0.65-1.20)
≥3	97/149	110/141	10.9	7.7		0.69 (0.52-0.90)
Baseline ECOG performance status						
0	97/168	112/171	13.9	11.4		0.75 (0.57-0.98)
1	162/215	173/216	8.5	7.6		0.91 (0.73-1.13)
Region						
North America	85/120	94/122	11.2	9.1		0.79 (0.59-1.06)
Rest of the world	174/263	191/265	11.1	9.3		0.86 (0.70-1.05)
Main pancreatic tumour location						
Head	97/147	116/156	10.2	9.1		0.86 (0.65-1.12)
Other	162/236	169/231	11.7	9.2		0.83 (0.67-1.02)
Baseline CA 19-9						
<37 U/mL	34/60	45/71	13.2	10.9		0.75 (0.48-1.17)
≥37 U/mL	223/321	240/316	11.1	9.1		0.84 (0.70-1.01)
Race						
White	218/315	240/324	10.7	9.0		0.84 (0.70-1.01)
Sex						
Male	139/204	175/230	10.9	9.0		0.82 (0.66-1.02)
Female	120/179	110/157	11.6	9.5		0.88 (0.68-1.14)
Age, years						
<65	127/193	130/191	11.5	9.9		0.92 (0.72-1.17)
≥65	132/190	155/196	11.0	9.0		0.77 (0.61-0.97)
Overall	259/383	285/387	11.1	9.2		0.83 (0.70-0.99)
						5 20
				¥		5 2.0
				NALIRIF	-OX Better GEM + Nab	P Better

CA19-9, carbohydrate antigen 19-9; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; GEM, gemcitabine; ITT, intention-to-treat; NabP, nanoparticle albumin-bound paclitaxel; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; OS, overall survival Wainberg Z, et al. Lancet 2023;402:1272-81

NAPOLI-3: OVERVIEW OF TEAEs IN SAFETY POPULATION

- More hematologic toxicity observed with GEM + NabP
- More diarrhoea, nausea, and vomiting observed with NALIRIFOX

TEAEs of grade 3-4 occurring in ≥5% of patients in either treatment arm	NALIRIFOX (N=370)	GEM + NabP (N=379)
Diarrhoea	75 (20%)	17 (5%)
Nausea	44 (12%)	10 (3%)
Vomiting	26 (7%)	8 (2%)
Decreased appetite	32 (9%)	10 (3%)
Hypokalaemia	56 (15%)	15 (4%)
Fatigue	23 (6%)	20 (5%)
Asthenia	33 (9%)	19 (5%)
Neutropenia	52 (14%)	93 (25%)
Neutrophil count decreased	36 (10%)	51 (14%)
Anaemia	39 (11%)	66 (17%)
Peripheral neuropathy	12 (3%)	22 (6%)
Increased γ -glutamyltransferase	23 (6%)	21 (6%)

The most common AEs (any grade) leading to dose reduction of liposomal irinotecan and oxaliplatin was diarrhoea (40% and 36% of patients with dose reductions, respectively)

Data are median (range; IQR) or n (%)

AEs, adverse events; GEM, gemcitabine; NabP, nanoparticle albumin-bound paclitaxel; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; TEAE, treatment-emergent adverse event Wainberg Z, et al. Lancet. 2023;402:1272-81

OVERALL SURVIVAL IN PATIENTS WITH AND WITHOUT DOSE REDUCTION OF LIPOSOMAL IRINOTECAN AND OXALIPLATIN

POST HOC ANALYSIS OF NAPOLI-3 STUDY

• Liposomal irinotecan or oxaliplatin dose reductions do not adversely affect OS

CI, confidence interval; OS, overall survival; RoW, rest of world

Patel A, et al. J Clin Oncol 2025; 43, 716-716: DOI: 10.1200/JCO.2025.43.4_suppl.716 (ASCO GI 2025 poster presentation)

SUMMARY OF EFFICACY AND SAFETY OF NALIRIFOX AND FOLFIRINOX

	NALIRIFOX ¹ N=370	FOLFIRINOX ² N=171					
Efficacy Results							
Median OS, months	11.1	11.1					
OS at 12 months, %	45.6	48.4					
OS at 18 months, %	26.2	18.6					
Median PFS, months	7.4	6.4					
ORR, %	41.8	31.6					
Safety Results							
Grade 3-4 diarrhoea, %	20.3	12.7					
Grade 3-4 vomiting, %	7.0	14.5					
Grade 3-4 neuropathy, %	3.2	9.0					
Grade 3-4 neutropenia, %	14.1	45.7					

Data presented for information purposes. Cross-trial comparison is not intended

FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; ORR, objective response rate; OS, overall survival; PFS, progression-free survival 1. Wainberg Z, et al. Lancet 2023; 402:1272-81; 2. Conroy T, et al. N Engl J Med. 2011;364:1817-25

GEM + NabP IS EFFECTIVE FOR PATIENTS WITH A POOR PERFORMANCE STATUS

- Schedule 3 weeks on 1 week off
- Median age 71 and 68 (range 35-89)
- mPFS 5.4 vs 6.6 months (P=0.28)
- Free of disease progression at 6 months: 44% vs 58%
- mOS 7.7m vs 9.8m (P=0.11)
- No significant differences in AEs between the two dose regimens

AEs, adverse events; GEM, gemcitabine; (m)OS, (median) overall survival; (m)PFS, (median) progression-free survival; NabP, nanoparticle albumin-bound paclitaxel Maccarulla T, et al. J Clin Oncol. 2019;37:230-238

POLO: PARPI AS MAINTENANCE THERAPY FOR *BRCA*m mPDAC PATIENTS POST-PLATINUM CHEMOTHERAPY

• Global, randomised, double-blind phase 3 trial

Patients with metastatic pancreatic cancer and deleterious/suspected deleterious germline *BRCA1/2* mutation, ≥16 wks of first-line platinum-based therapy without progression (4-8 wks from last dose) (N=154)

- **Primary endpoint:** PFS by blinded independent central review
- Key secondary endpoints: safety/tolerability, PFS2, ORR, OS, HRQoL

1L, first-line; BID, twice daily; BRCA, BReast CAncer 1/2 gene; HRQoL, health-related quality of life; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS(2), (second) progression-free survival; wks, weeks Golan T, et al. N Engl J Med. 2019;381:317-27; Kindler H, et al. J Clin Oncol. 2022;40:3929-39

POLO: PFS LONGER WITH MAINTENANCE OLAPARIB THAN PLACEBO

OVERALL SURVIVAL²

PROGRESSION-FREE SURVIVAL¹

CI, confidence interval; BRCA, BReast CAncer gene mutation; DCO, data cut-off; HR, hazard ratio; mo, months; mPDAC, metastatic pancreatic ductal adenocarcinoma; OS, overall survival; PARPi, poly(ADP-ribose) polymerase inhibitor; PFS, progression-free survival

1. Golan T, et al. N Engl J Med. 2019;381:317-27; 2. Kindler H, et al. J Clin Oncol. 2022;40:3929-39

TARGETED THERAPY FOR PANCREATIC ADENOCARCINOMA

Molecular Target	Targeted Therapy	NCCN panel recommendations		
	Larotrectinib	1 st line and subsequent treatment options for pts with NTRK gene fusion-positive locally advanced		
NTRK gene fusions	Entrectinib	or metastatic pancreatic adenocarcinoma and for recurrent disease		
	Repotrectinib	Category 2B recommendation as 1 st line for patients with metastatic disease (PS 3) and subsequent therapy or therapy for recurrent disease for patients with intermediate/poor PS (PS 2-3)		
RET gene fusions	Selpercatinib	1^{st} line: pts with locally advanced/metastatic disease (PS 0–2) and as subsequent therapy for pts with good PS (0–1)		
NRG1 gene fusions Zenocutuzumab-zbco		FDA approved for advanced, unresectable, or metastatic pancreatic adenocarcinoma harboring a NRG1 gene fusion with disease progression on or after prior systemic therapy. Awaiting incorporation into the NCCN guidelines		
KBAS C12C mutations	Adagrasib	Subsequent therapy options for patients with any PS (category 2B for poor PS)		
KRAS GIZC Indiations	Sotorasib	Subsequent merapy options for patients with any PS (category 26 for poor PS)		
BRAF V600E mutations Dabrefenib/trametinib		1 st line: metastatic disease (category 2B) and as subsequent line options (category 2A) for pts with good/poor PS and BRAF V600E mutations		
HER2-positive	Fam-trastuzumab-deruxtecan-nxki	As a subsequent therapy option only for patients with good PS and HER2 IHC 3+ expression		
	Pembrolizumab	In the advanced disease setting for first-line and subsequent treatment (if no prior immunotherapy)		
MSI-H/TMB-H/dMMR	Dostarlimab-gxly	As a subsequent treatment option (if no prior immunotherapy) for patients with MSI-H or dMMR locally advanced, metastatic, or recurrent pancreatic adenocarcinoma and any PS		
	Nivolumab/Ipilimumab	Category 2B, subsequent therapy option for patients with good or intermediate PS and those who did not receive prior immunotherapy		

BRAF, B-Raf proto-oncogene serine/threonine kinase; dMMR, deficient DNA mismatch repair; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral oncogene homolog; MSI-H, microsatellite instability-high; NTRK, neurotrophic tyrosine receptor kinase; PDAC, pancreatic ductal adenocarcinoma; PS, performance status; RAS, rat sarcoma; RET, rearranged during transfection; TMB-H, tumour mutational burden-high

NCCN Guidelines Version 3.2024. Available at: <u>https://www.nccn.org/guidelines/guidelines/guidelines-detail?category=1&id=1455</u>. Accessed October 2024 NCCN guidelines for pancreatic adenocarcinoma, Version 3.2024: <u>pancreatic.pdf (nccn.org</u>)

SUMMARY

- Cytotoxic chemotherapy remains the cornerstone of systemic therapy for advanced or metastatic pancreatic cancer
- NALIRIFOX is a possible new option for frontline therapy based on the NAPOLI-3 clinical trial
- Maintenance therapy after a period of chemotherapy is an option for patients with *BRCA* or *PALB2* alterations
- Treatment selection depends on several factors, including patients' performance status and co-morbidities. These should be considered alongside the efficacy and safety profiles of the different chemotherapy regimens
- Treatment strategies can be implemented to manage toxicities associated with the different chemotherapy regimens to enable a patient to stay on treatment for optimal efficacy

BRCA1/2, BReast CAncer 1/2 gene; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; PALB2, partner and localiser of BRCA2 NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024

GI connect[®]

POWERED BY COR2ED

Visit us at

Heading to the heart of Independent Medical Education since 2012